Translational termination in Escherichia coli: three bases following the stop codon crosslink to release factor 2 and affect the decoding efficiency of UGA-containing signals.

نویسندگان

  • E S Poole
  • L L Major
  • S A Mannering
  • W P Tate
چکیده

The observations that the Escherichia coli release factor 2 (RF2) crosslinks with the base following the stop codon (+4 N), and that the identity of this base strongly influences the decoding efficiency of stop signals, stimulated us to determine whether there was a more extended termination signal for RF2 recognition. Analysis of the 3' contexts of the 1248 genes in the E.coli genome terminating with UGA showed a strong bias for U in the +4 position and a general bias for A and against C in most positions to +10, consistent with the concept of an extended sequence element. Site-directed crosslinking occurred to RF2 from a thio-U sited at the +4, +5 and +6 bases following the UGA stop codon but not beyond (+7 to +10). Varying the +4 to +6 bases modulated the strength of the crosslink from the +1 invariant U to RF2. A strong selection bias for particular bases in the +4 to +6 positions of certain E. coli UGANNN termination sites correlated in some cases with crosslinking efficiency to RF2 and in vivo termination signal strength. These data suggest that RF2 may recognise at least a hexanucleotide UGA-containing sequence and that particular base combinations within this sequence influence termination signal decoding efficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indirect regulation of translational termination efficiency at highly expressed genes and recoding sites by the factor recycling function of Escherichia coli release factor RF3.

Prokaryotic release factor RF3 is a stimulatory protein that increases the rate of translational termination by the decoding release factors RF1 and RF2. The favoured model for RF3 function is the recycling of RF1 and RF2 after polypeptide release by displacing the factors from the ribosome. In this study, we have demonstrated that RF3 also plays an indirect role in the decoding of stop signals...

متن کامل

Translational termination efficiency in mammals is influenced by the base following the stop codon.

The base following stop codons in mammalian genes is strongly biased, suggesting that it might be important for the termination event. This proposal has been tested experimentally both in vivo by using the human type I iodothyronine deiodinase mRNA and the recoding event at the internal UGA codon and in vitro by measuring the ability of each of the 12 possible 4-base stop signals to direct the ...

متن کامل

Termination of translation in bacteria may be modulated via specific interaction between peptide chain release factor 2 and the last peptidyl-tRNA(Ser/Phe).

The 5' context of 671 Escherichia coli stop codons UGA and UAA has been compared with the context of stop-like codons (UAC, UAU and CAA for UAA; UGG, UGC, UGU and CGA for UGA). We have observed highly significant deviations from the expected nucleotide distribution: adenine is over-represented whereas pyrimidines are under-represented in position -2 upstream from UAA. Uridine is over-represente...

متن کامل

Wobble decoding by the Escherichia coli selenocysteine insertion machinery

Selenoprotein expression in Escherichia coli redefines specific single UGA codons from translational termination to selenocysteine (Sec) insertion. This process requires the presence of a Sec Insertion Sequence (SECIS) in the mRNA, which forms a secondary structure that binds a unique Sec-specific elongation factor that catalyzes Sec insertion at the predefined UGA instead of release factor 2-m...

متن کامل

Comparison of characteristics and function of translation termination signals between and within prokaryotic and eukaryotic organisms

Six diverse prokaryotic and five eukaryotic genomes were compared to deduce whether the protein synthesis termination signal has common determinants within and across both kingdoms. Four of the six prokaryotic and all of the eukaryotic genomes investigated demonstrated a similar pattern of nucleotide bias both 5' and 3' of the stop codon. A preferred core signal of 4 nt was evident, encompassin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 26 4  شماره 

صفحات  -

تاریخ انتشار 1998